Vision Group acknowledged

The University of Stirling Vision Group*

In many places in my books, I acknowledge the importance of the role of colleagues from University of Stirling in the development of the new science-based ideas put forward in them. In particular I mention cooperations with scientists from various departments who later were to join me in the University of Stirling Vision Group. The most important of these were:

  • Alistair Watson (Physics, psychology and computer imagery).
  • Leslie Smith* (computing).
  • Bill Phillips* (visual memory and brain function).
  • Karel Gisbers (neurophysiology).
  • Ranald McDonald (statistics and common sense).
  • Lindsay Wilson* (at the time working on aspects of visual perception).

Also, although Peter Brophy* did not join our group, he was an ever-available and important source of information on the biochemistry of the brain.

The founding of the Vision Group.

It was in  the Autumn of 1984 that Alistair, Leslie and I took the first steps in the setting up of the University of Stirling Vision Group, which was to have many meetings attended by the above named colleagues and other members of the various interested Departments. Its starting point was a package of ideas developed by Alistair and myself, and two core algorithms based on them, produced by Alistair.  These were:

  • A colour constancy algorithm, capable of modelling both spatial and temporal colour constancy, which was inspired by our interpretation of how this phenomenon is achieved by human eye/brain systems. As a preliminary step to achieving this main objective, the algorithm has to pick off the information about surface-reflection. Since it was obvious that the reflected-light contained information, we speculated upon how it might be used by the eye/brain. Due to my interest in picture perception, we focused on its potential for computing surface-form, in front/behind relations, and the wavelength composition of ambient illumination.**
  • A “classification/recognition algorithm”, based on our interpretation of how human eye/brain systems achieves their primary task of enabling recognition.***

We could not help being excited by the early tests of these algorithms and the speculations concerning their potential. In our  enthusiasm to push matters further, Alistair suggested we should seek the help of other researchers, particularly ones with expertise in:

  • Mathematics and computing.
  • Visual perception with special reference of visual memory.

It was at this juncture that, having decided on a name for what we were hoping would become a collaborative group, we contacted Leslie Smith for his mathematical and computing skills. But this was only a start. Once Leslie was on board, we approached Bill Phillips, whose long standing interest in visual memory had led him to take the plunge into the recently emerging domain of neural networks and learning algorithms. After many Vision Group meetings, much sharing of ideas, many hours spent working on implementations of algorithms, and the writing of a number of working papers, we decided to submit a suite of five grant applications to the Science and Engineering Research Council, who had let it be known that they were looking for groups of researchers working on the use of computers to model the functional principles of neural system. The stated aim of the SERC was to set up a small number of “Centres of Excellence” in this domain.  Not only were two of our grant applications accepted (one submitted by Bill Phillips and one submitted by Leslie Smith), but also our university was encouraged to create a brand new  Centre for Cognitive and Computational Neuroscience . This empire absorbed the University of Stirling Vision Group which ceased to have an independent existence. Its coming into existence also coincided with my departure from Stirling on my way to founding my Painting School of Montmiral, where I intended to put theory into practice both in my own work and in my teaching. I also had hopes of confirming and, with any luck, extending the theory.

* This same text can be found under the heading of “doubts”.

Full list of Posts

Back to top of the page

 

 

 

 

Can we see light?

The simple answer is “no”

What we see is not light, but experiences created by neural networks within the eye and the brain (what I often refer to as “eye/brain systems”). Although it is true that the visual world that we know could not happen in the absence of the patterns of light that enter our eyes, it is only made manifest to us as a result of what is going on inside our heads.  This Post provides a link to Chapter 9 of my book “Painting with Light and Colour”, which describes two demonstrations that show just how great can be the difference between an image predicted on the basis of readings from a light meter and the one we actually experience.

Edwin Land’s demonstrations

The demonstrations have a personal importance because they played a key role in the story of my quest to explain the paradox inherent in the dogmas of Marian Bohusz-Szyszko  (explained in Chapter 2). They were devised by Edwin Land, the famous inventor, as a part of his investigation of the phenomenon of “colour constancy”.

CHAPTER 9 – SEEING LIGHT

More on Land’s demonstration

For another relevant source of information on Land’s demonstration please consult “Land’s colour constancy demonstration”, an edited version of a chapter from my book “What Scientists can Learn from Artists”. You might also want to read the original article in  “Scientific American, December 1977”.  In this Land explained what he described as his “Retinex theory of colour vision”.

light
The multicoloured display used by Land as the cover for his 1977  article in the “Scientific American”

.

Other chapters from “Painting with Light and Colour”:

 

Other Posts on colour and light in painting:

 

List of all other Posts

Return to top

Scientific revolution gives artists ideas

Five Scientists and a scientific revolution

Strictly speaking a scientific revolution cannot have either a starting point or and end point. It is always part of an ongoing process. However, two events provide milestone contributions to the scientific revolution in the understanding of visual perception that took place in the 18th and 19th centuries. The first was a lecture given by Gaspard Monge in 1789 . The second, the publication of a book by Hermann von Helmholtz in 1867. In between these two dates, various other scientists made key contributions to the science of visual perception. Three worth special mention were Johann Wolfgang von Goethe, Michel Eugène Chevreul and James Clerk Maxwell.

Continue reading “Scientific revolution gives artists ideas”

Contents Lists for three of my books

The subjects covered are:

1.  Drawing    2. Painting    3. Creativity

These are followed by Posts on other subjects

Preface to all three books

1. DRAWING

Chapters from “Drawing on Both Sides of the Brain”.

Other Posts on Drawing

2. PAINTING

Chapters from “Painting with Light and Colour”:

Other Posts on colour and light in painting:

3. CREATIVITY

Chapters from “Fresh  insights into Creativity”

Extracts from Chapter 10: “Having fun with creativity”

4. PAINTING SCHOOL NEWS

5. MISCELLANEOUS

Your comments on the Contents List page.

I look forward to your comments in the section provided at the bottom of each Post. When you have made them, please leave your email address and tick the box “Notify me of new posts by email.”

ENJOY

Back to the top of the page

Caladrius bird for the contents list